RHIC II High p_T Measurements and Bjorken NON Scaling

Azfar Adil
Nuclear Theory Group
Columbia University

Outline of Presentation

- Local Bjorken Scaling Violations
 - Rapidity "Triangle", BGK model.
 - CGC Models?
- Local Scaling Violation Effects in A-A
 - $RAA(\phi, \eta, b)$
 - Rotation and Dynamical Twists
 - Moments and Flow
- What do we need at RHIC II?
 - Some complications
 - High p_T, High luminosity, Identified Particles, High rapidity and full azimuthal acceptance

5/2/2005

I. Nuclear Geometry and Bjorken Scaling Violations

Bjorken Scaling

- Assume boost invariant rapidity structure of produced low p_T particle distributions in the initial state (mid rapidity plateau)
- Boost invariant initial distribution fed into hydrodynamic and flow calculations
- Good approximation for nucleus-nucleus collisions, only good to O(A^{1/3}/log(s))

Bjorken **NON** Scaling at RHIC

- Bjorken Scaling only good when parameter $A^{1/3}/log(s) = \delta << 1$
- At RHIC $\delta \sim 1$, even at LHC will be ~ 0.7
- Something not right in theory vs. data for v2 off mid rapidity
- Lets to look at whether any of this violation is from geometry

From hep-th/0410017

Details and future of hydro at RHIC Tetsufumi Hirano right now in parallel

Single Nucleus Density Distributions

Woods-SaxonDistribution

$$\rho(r) = \frac{a}{e^{\frac{r-R}{d}} + 1}$$

• Glauber Profile

$$T_A(r_T) = 2\int_0^\infty \rho(\sqrt{r_T^2 + z^2})dz$$

The p-A "Triangle"-BGK Model

- Low p_T particles are produced in η space as a "triangle"
 - Height $\propto v_A$

$$\nu_A(b) \approx \sigma_{in} T_A(b)$$

- Nucleon excitation at y_i
- Proj. color exc. $y_i < \eta < Y_i$
- Tar. color exc. $-Y < \eta < y_i$

FIG. 1. Idealized multiplicity distribution for an H-A collision with F= 3 inclastic excitations. The y_i are uniformly distributed in rapidity and can be produced in any sequence.

Figure from Brodsky, Gunion, Kuhn 1977.

And It Exists!!!

- Monte Carlo event generators such as HIJING have QCD dynamics built in
- The multiplicity seen in the RHIC d-A experiment has just this "triangle/trapezoid"
- The shape is even more apparent if we look at it as a ratio

Implementation for A+B

INTRINSIC LOCAL BJORKEN SCALING VIOLATION O(A^{1/3}/log(s))

Approximate local participant density with BGK

$$\approx \nu_A(\mathbf{x}_{\perp} - \mathbf{b}/2) \frac{Y - \eta}{2} + \nu_B(\mathbf{x}_{\perp} + \mathbf{b}/2) \frac{Y + \eta}{2}$$

• Can get global multiplicity

$$\approx \frac{1}{2}(N_A + N_B) + \frac{\eta}{2Y}(N_B - N_A)$$

 Note global multiplicity is boost invariant for A = B but not local density

What about CGC Initial State?

- The Color Glass Condensate (CGC) is QCD in the saturation limit and used to calculate multiplicities in nuclear collisions in the initial state
- Gives qualitatively similar results to the BGK model when calculating local participant density
- Also effects the jets and binary distribution, important for quenching calculations

Will come back to this later

II. Local Geometry and Dynamic Effects in A-A

Planar Participant and Binary Distributions

Planar Distributions of all types

$$\frac{dN_{Part}^{P/T}}{dxdy} = T_A(r_{\pm})(1 - e^{-\sigma T_A(r_{\mp})})$$

$$\frac{dN_{Bin}}{dxdy} = \sigma T_A(r_+) T_A(r_-)$$

$$r_{\pm} = \sqrt{(x \pm \frac{b}{2})^2 + y^2}$$

 Total Participant and Binary Number calculated by integrating over transverse plane

Adding Rapidity Dependence

- Distribution "inspired by" BGK model
- Exponential envelope inserted to model RHIC multiplicity

$$\frac{dN_{Part}}{dxdyd\eta} = \frac{C}{2Y}e^{\frac{-\eta^2}{\sigma_{\eta}^2}}\theta(Y - |\eta|)\left\{\frac{dN_{Part}^T}{dxdy}(Y - \eta) + \frac{dN_{Part}^P}{dxdy}(Y + \eta)\right\}$$

 Parameters set to RHIC central A-A

$$- C \sim 1.6$$

$$-Y\sim5$$

$$-\sigma_{\eta} \sim 3$$

A Closer Look

Contour Plots show particular properties of the local density

Rotation arc

Zero effect b = 6 Fmparameter

- More quantitation in second figure
 - Shift can be clearly seen
 - Drop due to overall exponential envelope is visible
- Similar geometries studied by Hirano/Nara

How to use Tomography

- Different rapidity regions effected by different initial nucleii (as seen from BGK model)
 - Asymmetry apparent in Participant density (rotation around y-axis)
 - Binary density unaffected (symmetric)
- Asymmetry can be probed via jet quenching
 - Long range rapidity anti correlations can be recorded.
 - Note: CGC complicates matters, stay tuned.

Opacity Line Integral

• Opacity defined as a line integral over local participant density

$$\chi_{\alpha} = \int_{\tau_0}^{\infty} \frac{dN_{Part}}{dxdyd\eta} (x_0 + t\cos(\phi), y_0 + t\sin(\phi), b) t^{\alpha} dt$$

- (x_0,y_0) origination point
- $-\alpha = -1,0,1$
- We can average over geometrical fluctuations

$$\frac{1}{N_{Bin}} \int \frac{dN_{Bin}}{dxdy} (x_0, y_0, b) \chi_{\alpha} dx_0 dy_0$$

From

• Nuclear Modific 0.8

Factor is used to 0.7

nuclear effects 0.6

$$R_{AA} = \frac{dN_{AA}/d\eta d^2p}{T_{AA}(d\sigma_{pp}/d\eta d^2} 0.5$$

• Calculated using ^{0.4} Drees, Jia et al. ^{0.3}

$$R_{AA} = \frac{1}{N_{Bin}} \int \frac{dN_{Bin}}{dxdy} (x_0, y_0, b)e^{-0.2}$$
 $- \kappa \sim 0.25$

φ (Azimuthal angle) RHIC II High pT Workshop

RAA from Another Perspective $\frac{RAA}{R_{AA}(\phi, \eta, b)}$

 $\frac{R_{AA}(\phi, \eta, b)}{R_{AA}^{min}(\eta, b)}$

- Try to track asymmetry in Polar Plots
- Measure using Octupole Twist ' θ_3 '
- Long range anti-correlation over rapidity
- Dynamic effect due to long range anti-correlations in geometry

Octupole Twist Evolution

- Evolution with rapidity and impact parameter true prediction
- As one increases rapidity there is an increasing Octupole Twist
- Dynamic effect of a larger transverse displacement due to rotation around y-axis

What about the Mo

• Decompose R_{AA} into fourier moments

$$R_{AA}(\phi, \eta, b) = a(\eta, b)(1 + 2\sum_{n=1}^{4} v_n(\eta, b)\cos(n\phi))$$

- Moments increase in magnitude with increasing asymmetry
- Higher moments
 increase in significance
 with larger b and η

What do we need at RHIC II?

Particle Identification

From PHENIX nucl-ex/0410003

- Tomography
 notoriously easier to
 perform using mesons
 (pions)
- Unidentified spectra include "baryon lump"
- To avoid this we need
 - Particle I.D.

5/2/2005

Go to High p_T

From Mike Miller's Thesis

Complication d/t CGC/Shadow I

- The d-A control experiment has provided some evidence for initial state quench off mid-rapidity
- In order to observe our effects one needs to be careful about accounting for this effect.
- Easiest solution, high enough p_T that it does not matter

Complication d/t CGC/Shadow II

- Shadowing functions tilt the Binary distribution $\frac{dN_{Bin}}{dxdy} = \sigma f_1(r_+)T_A(r_+)f_2(r_-)T_A(r_-)$
- There are further tilts due to Cronin effects (X.N. Wang)
- Again, easiest solution is go to High p_T , still problematic though

In case you're still not convinced...

- All the quenching arguments used in previous sections are valid only at high $p_T \ge 5 \text{ GeV}$
- All moments calculated are for jet like hard particles rather than soft bulk particles
- We NEED to be at high pT to find these interesting tomographic effects

The Problem with High p_T

 We still need to consider underlying partonic spectra

$$\frac{d\sigma_{q/g}}{d\eta d^2 p_T} \propto \frac{1}{p_T^{n(p_T,\eta)}}$$

- "kinetic quench" needs to be considered
- Problem only gets worse with hadron spectra, $n_H \sim n_{g/q} + 2$

Finally, RHIC II

- After considering all our effects and complications we...
 - Need to detect identified particles (mesons)
 - Need to have broad coverage in η and φ
 - Need to cover out to large p_T ≥ 5 GeV
 - Need High Luminosity in extreme areas

Conclusions

- Bjorken Scaling Violation is an important effect in A-A
 - A well known effect (BGK)
 - Has observable repercussions for tomography
- Including BGK effects leads to
 - Rotation of Participant Density
 - Induced Dynamic Twist Effect θ_3 in $R_{AA}(\varphi)$
 - Specific predicted fourier moments
- Further Complications from
 - CGC/Shadowing
 - Cronin
 - Need High p_T

WE NEED RHIC II